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ON THE MOTION OF TWO SPHERES IN AN IDEAL FLUID 

O.V. Voinov 

ABSTRACT: The motion of two spheres in an ideal fluid is studied, 
The kinetic energy and the hydrodynamic interaction forces are 
calculated for the case of small distance between the spheres, in 
particular for the case of contacting spheres, The velocity field 
for contacting spheres is determined, 



NASA TT F-12,764 

ON THE MOTION O F  TWO SPHERES IN AN IDEAL FLUID 

O.V. Voinov 

(Moscow) 

A study is made of the motion of two spheres in an ideal fluid. The kinetic energy /659* 
and the forces of hydrodynamic interaction are  calculated for the case when the distance 
between spheres is small, in particular for contact between the spheres. The features of 
the velocity field upon contact between the spheres are determined. 

The kinetic energy of the fluid for the case of sphere motion along a line connecting 
centers (center line) was calculated by Hicks [l]. Upon the motion of spheres perpendic- 
ular to the center line the kinetic energy is known when the distance between spheres is 
considerably greater than their radii [2]. 

1. Velocity Potential. Two spheres are moving in an ideal incompressible fluid at 
res t  at infinity. The motion of the fluid is assumed to be potential. In calculating the ve- 
locity potential it is sufficient, by virtue of the linearity of the problem, to consider the 
case when the velocities of the spheres a re  coplanar. 

e., cp. are  chosen with origin at  the center of the 

- 

Spherical coordinate systems r i' 1 1 
i-th sphere (i = 1, 2) and with positive direction of the polar axes toward the adjacent 
sphere (see the Figure). The azimuth angle cp. is measured from the direction perpendic- 

1 
ular to the velocities of the spheres. The positive di- 
rection of the polar axis of the i-th coordinate system 
is chosen as the positive direction of projection u. of the 

velocity onto the line joining centers. The positive di- 
rections of the projections v1 and v2 of the velocities of 
the spheres onto a line perpendicular to the line joining 
centers are chosen to __ coincide. I 

1 

The velocity potential 6, of the fluid must staisfy the Laplace equation in a region 
exterior to the two spheres and the boundary conditions 

, A 0  = 0, dO/dril R ~ ! =  ui cos O i  + vi sin Oi sin 'p i  

U) -tO as ri --too 
- 

*Numbers in the margin indicate pagination in the foreign text. 
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where R. is the sphere radius. The solution of this problem can be found by the method 

of images El-41. 
i sum of a series of functions Gn harmonic in the exterior of the i-th sphere 

1 
The potential is determined by successive approximation and is the 

0 = (Qpt + (D:+'P;+. . .)+((I$+ Q;+ t.. .) (1.1) 

/660 In this case @: satisfies the following conditions on the i-th sphere: - 

(1.3) 

Here and everywhere below k = 1, 2, k f i. 

First of all it is possible to examine the motion of spheres along a line joining cen- 

ters (vl = vz = 0). In this case it is well known [l-41 that the functions Q;1 will be the po- 
tentials of dipoles located within the spheres along the center line. It is possible to'seek 
the in the following form: 

i 

r. 

- 

ai, =.ai, (r i  cos e i  - U i n )  ( r i 2  - 2 5  u i n  cos e i  + Uin2)+:  (1.4) 

Substitution of (1.4) into (1.3) makes it possible to find equations for the unknown 
coordinates and for the strength of the dipoles: 

Here a is the distance between the centers of the spheres. These recurrence rela- 
tions can be solved most simply if we seek not the coordinates ain, but the products of 

coordinates, in the same way as did Murphy in the electrostatic problem of the potential 

of two charged spheres [5]. Introduced here are  the new coefficients A: and Bn, defined 
by the formulas 

i 

Then, according to (1.6) the coordinates of the dipoles are  
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The coefficients Ai and Bi are determined from (1.5)-(1.8) in the following form: n . n  

(z - ‘C-l)AtL= Z“ (7 f R L  / Rk)  - Cn(Z-’ f Ri / Rk),  
(z - T-’)B; .= (rn - P) a / R ,  (1.9) 

Here T is the root of the equation 

a% = (TR, + R,) (TX, + R,) (1.10) 

Actually, substitution of (1.8) into (1.5) yields the recurrence relations 

R,B; + RkBfi-l = aA:-,, RiAa + RkAi-,  = aB, h‘ (1.11) 

with initial conditions 

A i  = 1, A f = (a? - Rl;= )I fi1R2; i3: = 0, B\ = alR, (1.12) 

Relations (1.11) are solved for AX and BX. In particular, for A i  we get 

c 
i . i  

A n  - A,, (a2 -If? - R;) 1 RIR, + A A - ~  = 0 (1.13) 

The coefficient B i  satisfies exactly the same equation. The general solution of - /661 
A* n -n , the recurrent chain (1.13) with arbitrary conditions in the two numbers is c 7 + C ~ T  1 

where 7 is determined by,(l .  10). The constants c1 and c2 a re  determined from the initial 

conditions (1. U), and as a result we get formulas (1.9). 

The convergence of series (1.1) with functions (1.4) takes place everywhere, ex- 
cept for the point of tangency of the spheres 8. = 0, r. = R ,  when the spheres are  in con- 

tact. In this case the condensation point of the coordinates of the dipoles a changes to 
the point of tangency of the spheres. This factor is the reason for the ineffectiveness of 
the method of expansion in spherical functions used in [2], when the distance between 
spheres is relatively small compared to the radius. In the region with eliminated point 

of tangency the potential series converges approximately as  l/n . If the spheres do not 
touch each other, then, as  follows from (1.5)-( 1.6), the series converges approximately 
as a geometric progression whose index decreases rapidly with decreasing distance be- 
tween spheres. 

1 1 

in 

3 

2.  Tangential Velocity on Spheres in  Contact. On spheres the formulas for the 
potential, (1.1) and (1.4), aresimplifiedappreciably if account is taken of (1.5) and (1.6): 
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If the spheres are  in contact, T = 1 follows from formula (1.10). In this case we 
get from (1.9) 

B i = n a l R i ,  A i = l + n a l R k  (2.2) 

Substitution of (2.2) into (1.8) makes it possible to find the coordinates of the di- 
poles 

ai2i = R, 1(1 -t R k  / an), ai2n-1 = R ,  (1 - R k  I an) (n=*Jp..l.) (2.3) 

Because of the linearity of the problem it is sufficient to examine collision of the 
spheres and motion in one direction separately. If in conformity with this fact we con-. 
sider u1 = 5 u2 and introduce the variable t =  tan1/26, from (2.1)-(2.3) and (l.?), (1.8) 

it is possible to obtain an expression for the tangential velocity v 6  on the sphere 

(2.4) 

The plus sign'in (2.4) corresponds to head-on motion at the same speeds, and the 
minus sign corresponds to motion in one direction. 

If we choose the plus sign, the asymptotics of the series in (2.5) can be easily be 
found as  5 - 0 (6 - 0) by means of the Euler-Maclaurin formula, according to which 
we get 

vo = 2uiRI, 1 (Iil 4- R,)Oi -/- O(const) 

Consequently, as a result of approach of the colliding spheres to contact, a plane 
source was formed at the point of tangency of the spheres which throws back the fluid in 
the plane of tangency. 

When the velocities of the contacting spheres are directed in the same senses u1 = 

/662 
= -u2, it is convenient to change over to a coordinate system moving together with the 
spheres and to rewrite (2.4) in the following form: - 

PO = -V2 (1 + E2)'/z f (E) u1 sin O i  (E = tg I/&) (2.5) 
- 

It is proved below that as 5 - 0 



From formulas (2.5) and (2.7) it follows that the tangential velocity on the sphere 
falls off exponentially with decreasing distance to the point of contact. Thus, in the case 
of spheres of the same radius, the velocity near the contact zone varies as exp(-x/B)/ 

Consequently, the fluid stagnates near the zone of sphere contact. 

Asymptotic (2.7) is obtained from (2.6) by means of the Poisson summation formula, 
which has the form [6] 

05 05 

(2.8) 

The integrals in (2.8) will be denoted by Iz;  Iz = -I-z, since g(5, x) = -g(( ,  -x). The 

exchange of variable x5Y = t is made in the integrals. Then 

M 

Before going over to a new method of integration, it is necessary to integrate (2 .9)  
by parts, and then rectify the integTand at the point t = i if cr 7 0, in order to make the in- 

Q tegral over the imaginary axis convergent up to the point t = i. As a result, Iz takes the 
form 

, . -- 

(2.10) 

Chosen for transformation (2.10) is a contour consisting of the following parts: 
t from -R to + R along Im t = 0;  a part of the circle Reie, &[O, 1/2 n ] ;  the segment 

1 I -  from iR + E to i + E ; the part of the circle E ei e + i, e€ [ - T, 01; the segment from 

i - E to iR-E; a part of the circle Reie, 8€[1/2n, T]; (R and E are  real numbers). The 

on the segment iy + E .  As R - co, E - 0 it follows, on the basis of the Cauchy theorem, 
that 

1 

function (1 + t2)1/2 takes the value -i(y2 - 1)1/2 on the segment iy - E and i(y 2 - 1) 1/2 

The exchange of variable y = 1 + u2 and the series expansion of the resultant inte- 
grand function make it possible to calculate the first terms of the asymptotic Iz as (r - - OQ (5 -9 ) :  

(2.11) 
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Here allowance has been made for the fact that CT = -2nZ/&. The formula (2.11) 
is valid only for Z < 0. Making use of the fact that Iz is an odd function, we can obtain 
formula (2.7) from (2.11) and (2.8), taking only I = *l into account. 

3. The Kinetic Energy of the Fluid. The kinetic energy T of an ideal incompres- /663 --- - - 
sible fluid is expressed, as is well known [3, 41, in terms of the values of the potential 
on the boundary surfaces 

(3.1) 

The motion of two spheres can always be represented as  the sum of three motions: 
motion of the spheres along a line joining centers and motion along two mutually orthog- 
onal directions which a re  orthogonal to the line joining centers. The kinetic energy of 
a fluid for arbitrary motion of the spheres is equal to the sum of the kinetic energies of 
the fluid in each of these three motions separately [ l ,  21. This property of additivity can 
be proved by means of symmetry considerations [l, 21 or on the basis of the simplest 
properties of the potential and of Green identities. The additivity of the kinetic energy 
makes it possible to limit oneself to a calculation of the kinetic energy for two cases: 
motion of spheres along a line joining centers and perpendicular to the line at coplanar 
velocities. 

* 

When the spheres move only along the center line, substitution of formulas (1.2) 
and (2.1) into (3.1) after calculation of the integral 

- 
(Ri2  - ai,:) cos 0 sin D 2 

q/P de  = - 
Ria s ain(Ri?-2Riain cos 0 + ain 0 

permits us to find the kinetic energy of the fluid: 

2 00 

This problem was solved by Hicks in a somewhat different form [I, 21. Here the 
a re  known from (1.7) and (1.9) as functions of 7. The relationship between r and a C'  

n 01 

is given by formula (1.10) 

The kinetic energy is a quadratic form in the velocities 

1 - T = A$UL2 + ~ B u L u ~  + A,uz2 
.XP 

6 

(3.3) 



The coefficients Ai, B can be written in accordance with (1.7) and (3.3) in the form 

(3 .4)  

where A i  and B i  are  known from (1.9). 

ple form if (2.2) is taken into account: 
When the spheres a re  in contact, the coefficients Ai, B take on a particularly sim- 

where ~ ( x )  is Riemann's zeta function. In particular, if the radii of the spheres are  
equal, it is not difficult to calculate 

A = I P  (7/,& (3) - 'J/:,) z 0.335 l P ,  I3 = 0.1255 (3)ZP Z 0.150 .lP 

This coincides with an analogous result in [I]. 
rtL 

4. The - Forces of Hydrodynamics Interaction between - Two Spheres --- at Short Dis- - /664 
tances. The motion orspheres in an ideal incompressible fluid is described by Lagrange 
equations [3, 41; therefore, 8T/8a will be the force of interaction between two spheres. 
Hicks [l] found that the series determining the coefficients of quadratic form 8T/aa de- 
verge if one sphere touches the other. The two leading terms of the asymptotics of sums 
of series can be obtained as follows. Denoting the general term of one of the series for 
dAi/da or dB/da, which were determined by term-by-term differentiation of formula (3.4), 
by f(n, T ) ,  it can be seen that the functions 

where E ( ~ / ( T  - 1)) is the integral part of ( T  - l)-I, are  bounded as T - 1. Moreover, the 
difference f(n, T)-f(n, 1) tends to zero uniformly with respect to n as T - 1 owing to the 
fact that f(n, T) tends to zero uniformly with respect to T as n - 00. This is fulfilled de- 
spite the fact that the function f(n, T )  is not a uniformly continuous function of the argu- 
ment 7. Because of the remarks we have made, the last two series in the indentity 

can be replaced by integrals. Consequently, the following formula holds: 

03 E t'1/(7-1)1 w 

(4.1) 2 f (n, z) = 2 f (n, 1) - l'y)f(5, 1) d r  4- J (5, z) d5 + 0 (z - 4) 
I 1 -1 n--r 
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When applying this formula to series (3.4), which determines the coefficients aT/ 
/aa, the series on the right-hand side of (4.1) can be divided rather simply into a diverg- 
ent part and a constant. The integrals in  (4.1) are  calculated, and quantities of two higher 
orders in (7 - 1) remain in the resultant expressions. As a result of the calculations we 
get, after several cumbersome computations, 

_I 

p = RlR2 / (R, f R J ,  d = 2/3 - '12 In 2 - c, 6 = a - R, -E2 

where c is the Euler constant. In the case of spheres of same radius moving head-on at 
the same speed, we have at  short distances, according to'(4.2), (3.3), (3.4), 

dT I da ;=: In (a  1 R - 2) - 0.004Sl npu2fi2 (4.3) 

From formulas (4.2) it is evident that the difference dAi/da-dB/da remains finite /665 - 
, as a - Rl f R2, when the spheres approach to contact. It can be shown that the differ- 

ence  is always positive, i. e., spheres moving in one direction move away from each 
other at any ratio of radii. From (3.3), (3.4), (4.2) it follows that spheres of equal 
radii moving in contact in one direction are pushed apart by forces 

dT 1 da = (3/,,c (3) - 11-12) npu2R2 z 0.2084npu2R2 (4.4) 

5. Velocity Potential upon the Motion of Spheres Perpendicular --- to a Line 5- 
Centers. When spheres move perYndicularTo a line joining centers (ul = u2 = 0), the 
zero approximation for the potential that satisfies (1.2) has the following form in the i-th 
coordinate system: 

~~. . . . . 

(5.1) 

It is well known [l, 21 that the potential is determined by a certain system of dipoles 
located within the spheres along the center line and orthogonal to this line. The problem 
consists in finding this entire system. For constructing the solution it is convenient to 
introduce dipole coordinates dependent on the dimensionless variables x n' The dipole 

x ) is determined analogously to (1.5): coordinate bin = b. (a, xl, . . . n in 

b,, = Ri2z, (a - bL.J1, bi, = 0, z,,€ [ O , l ]  (n=i, 2 , .  . .) (5.2) 

It is easy to see that bin 5 a. always; b = a. only if x1 = 1,. . . , x = 1. The in in in n 
dipole located in the i-th sphere and having the coordinate b is written in the in  

8 



form 

@\ = f ,  sin 8, sincp, ( T i s  - 2ribia cos Oi + b;,,)-’/a 
It can be shown that for fixed n the functions 

satisfy Eq. (1.3). 

(5.3) 

(5.4) 

Here x = 1 in the functions outside the sign of the integral. It is easy to see that n i any Q, entering into (1.3) can be constructed by n-fold application of formulas (5.4) to n 
the functions of the zeroth approximation (5.1). But in order to write the expression for 
the function Gn, it  is necessary to introduce the coefficients 4 = &(a, xl, . . . xnml), 
which are a generalization of the coefficients CY: that arise in solving the problem of the 

motion of spheres along a line joining centers* 

i 

Y 

( 5 . 5 )  

It can be observed that I & I 5 \ ai I the equality sign being reached when x1 = 1, 

= 1. In addition to the new coefficients, it is necessary to introduce the oper- /666 n-1 - . . . , x 
ator Ln, defined as follows: 

i Now, by means of (5.1) and (5.4)-(5.6), it is possible to wri te  Q, in the compact n analytic form 

By this very fact the problem of finding the velocity potential is solved. 

In order to calculate the kinetic energy of the fluid it is sufficient to know the 
potential Q, on the spheres. The expression for the potential on a sphere is.simplified 

_. . 

*Here, the argument xm = 1 is in each bim (m = 1, 2 , .  . . ). 
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if account is taken of the fact that 

= (bin I Ri)3 QL when ri = R ,  

and, consequently, cD; - l = -L1..J&fi; (?A. 
tential on a sphere is 

Then, according to (1.3) and (5.7),  the po- 

(5.8) 

6. Kinetic E n e r a  --- of the Fluid upon Motion -- of the Spheres Perpendicular to the 
Center - Line. When the spheres move perpendicular to the center line at  coplanar speeds 
(ul = u 2 = 0), the kinetic energy is calculated from formulas (1.2), (3. l), (5.3) and (5.8). 
In this case it is sufficient to consider that 

1 

and the kinetic energy is written in the following form: 

(6.1) 

where the operator Ln is defined by formulas ( 5 . 6 ) ,  the coefficient & is known from (5.5), 

the operator Lo is equal to the unit operator. 

It can be proved that the series on the right side of (6.1) converges faster than the 
analogous series on the right side of (3 .2) ,  which converges approximately as l /n  . To 
do so we first show that the continued fraction bin defined by (5.2), decomposes into a 

x with nonnegative coefficients. convergent (n-1)-dimensional power series in x 
This is not difficult to see if the continued fractions bil, bi2,. . . , are  decomposed into a 
series, one after the other, using formula (5.2). From the fact that all b. decompose 

into convergent power series with nonnegative coefficients in the (n-1)-dimensional cube - /667 

xl~[O,  11,. . . , x 
poses into' a convergent power series with nonnegative coefficients in the same cube: 

3 

1'.**' n- 1 

in 

~ [ 0 ,  11, it follows that I 41, defined by formula (5.5), also decom- n- 1- 
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Relatively simple calculations on the basis of (5.6) and (5.2) yield 

i < 2 CL.  ....mn-l = J a n  1 
ma, ..., m,,-l 

i where a! is determined by formula (1.6) for u. = v.. From the inequalities have obtained 

it is evident that for any distances between spheres the kinetic-energy series (6.1) is 
majorized by kinetic-energy series (3.2) if we set u. = vi. Thus, the kinetic-energy 

series upon motion of spheres perpendicular to a center line converges faster than the 
kinetic-energy series upon motion of spheres along a line joining centers. 

n 1 1  

1 

Formulas (5.5), (5.6), (6.1) make it possible to find the coefficients Ai and B' of 
the kinetic energy T = A' v f 2B'vlv2 -k ABvz. Thus, for spheres of equal radius in the 1 1  
case of contact we get, according to these formulas, 

2 2 

A' = 0.347npR3, B' = 0.0G7npR3 
LB 

The kinetic energy of a fluid upon the motion of two identical spheres in contact 
2 3  at the same speed perpendicular to a line joining centers proves to be T = 0.828~pu R . 

The author thanks V. G. Levich, A. M. Golovin and A. G. Petrov for discussing 
the results of this work. 
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